HOTS QUESTIONS

- 1. Two oxides of a metal contain 27.6% and 30% of oxygen respectively. If the formula of the first compound is M_3O_4 , find the formula of the second compound.
- 2. What is the mole fraction of the solute in 2.5m aqueous solution?
- 3. How many grams of Na_2CO_3 should be dissolved to make 100 cm³ of 0.15M Na_2CO_3 solution?
- 4. 2N HCl solution will has the same molar concentration as _____N H₂SO₄.
- 5. Boron occurs in nature in the form of two isotopes having atomic mass 10 and 11. What are the percentage abundances of the two isotopes in a sample of boron having average atomic mass 10.8?
- 6. How many atoms of sulphur are present in 0.1 moles of S_8 molecules?
- 7. Calculate the total number of electrons present in 1.6g of methane.
- A welding fuel gas contains carbon and hydrogen only. Burning a small sample of it in oxygen gives 3.38g of carbon dioxide, 0.690g of water and no other products. A volume of 10L (measured at NTP) of this welding gas is found to weigh 11.6g. Calculate:
 - (a) Empirical formula
 - (b) Molar mass of the gas, and
 - (c) Molecular formula.
- 9. An organic compound containing carbon, hydrogen and oxygen having following percentage composition: C=40.68%, H=5.08%. The vapour density of the compound is 59. Calculate the molecular formula of the compound.
- 10. How much marble of 96.5% purity would be required to prepare 100 litres of carbon dioxide at NTP when marble is acted upon by dil. HCl?
- 11. '3.0g of H_2 ' react with '29.0g of O_2 ' to yield H_2O .
 - (a) Which is the limiting reactant?
 - (b) Calculate the maximum amount of H_2O that can be formed.
 - (c) Calculate the amount of one of the reactants which remains unreacted.
- 12. Calculate the number of Cl^{-} ions in 100ml of 0.001M HCl solution.
- 13. How many moles of $Mg_3(PO_4)_2$ will contain 0.25 moles of oxygen atoms?
- 14. Commercially available sulphuric acid contains 93% acid by mass and has a density of 1.84g/ml. Calculate:
 - (a) The molarity of the solution
 - (b) Volume of the sulphuric acid required to prepare 2.5L of 0.50M H_2SO_4
- 15. Calculate the molarity of pure water (density of water=1g/ml).

CLASS: XI

SUBJECT: CHEMISTRY CHAPTER: 1 (SOME BASIC CONCEPTS OF CHEMISTRY) BY Priyanka Paul